Agrégation interne de mathématiques

Mathématiques générales 2003

24 septembre 2024

Première partie - Généralités

(I-1) (a) Soit $x \in V$. On a

$$x \in T_{\lambda} \Leftrightarrow vuv^{-1}(x) = \lambda x \Leftrightarrow u(v^{-1}(x)) = \lambda(v^{-1}(x)) \Leftrightarrow v^{-1}(x) \in U_{\lambda} \Leftrightarrow x \in v(U_{\lambda})$$

ce qui montre que $T_{\lambda} = v(U_{\lambda})$.

- (I-1) (b) Comme u et v commutent, on a t=u, d'où $T_{\lambda}=U_{\lambda}$: la question précédente montre que $v(U_{\lambda})=U_{\lambda}$.
- (I-1) (c) D'après la question précédente, v induit un endomorphisme $v_{|U_{\lambda}}$ de U_{λ} . Comme v est diagonalisable, il existe un polynôme $P \in \mathbf{C}[X]$ à racines simples tel que P(v) = 0: par restriction, $P(V_{|U_{\lambda}}) = 0$, ce qui montre que $v_{|U_{\lambda}}$ est diagonalisable.
- (I-2) Soit $u \in GL(V)$ d'ordre fini : notons $d \in \mathbb{N}_{>0}$ son ordre. Cela signifie que $X^d 1 \in \mathbb{C}[C]$ est un polynôme annulateur de u. Comme $X^d 1$ est à racines simples (ses racines sont les d racines primitives d-èmes de l'unité), cela implique que u est diagonalisable.
- (I-3) On procède par récurrence sur n, le cas n=1 étant trivial : supposons n>1. On peut bien entendu supposer X non vide (sinon il n'y a rien à faire). Si X est uniquement constitué d'homothéties, alors toute base de V est une base de codiagonalisation : supposons désormais qu'il existe $u\in X$ qui n'est pas une homothétie. Soit $\lambda\in \operatorname{Sp}(u)$: notons $U_\lambda=\operatorname{Ker}(u-\lambda\operatorname{Id}_V)$ le sous-espace propre associé, et W la somme des autres sous-espaces propres de u : on a $\dim_{\mathbf{C}}(U_\lambda)< n$ et $\dim_{\mathbf{C}}(W)< n$. Comme u est diagonalisable, on a $V=U_\lambda\oplus W$. Si $v\in X$, la question 1.c montre que v induit un endomorphisme diagonalisable de U_λ et un endormorphisme diagonalisable de W. Notons X_λ (resp. X_W) l'ensemble des endomorphismes de de U_λ (resp. W) induits par les éléments de X. Ce qui précède montre que l'hypothèse de récurrence s'applique à X_λ et X_W : il existe des bases \mathfrak{B}_1 et \mathfrak{B}_2 de U_λ et W respectivement, dans lesquelles les matrices des éléments de X_λ et X_W sont diagonales. La base $\mathfrak{B}_1 \cup \mathfrak{B}_2$ est alors une base de codiagonalisation des éléments de X.
- (I-4) Si $z \in \mathbb{C}$, posons $M_z = \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} \in \mathsf{GL}_2(\mathbb{C})$. L'application

$$\varphi \colon \mathbf{C} \to \mathsf{GL}_2(\mathbf{C})$$

$$z \mapsto M_z$$

est un morphisme de groupes injectif : son image est un sous-groupe abélien G de $GL_2(\mathbf{C})$. Comme M_1 n'est pas diagonalisable (sinon, sa seule valeur propre étant 1, il serait semblable, donc égal, à I_2 , ce qui n'est pas). Cela montre que G n'est pas diagonalisable.

(I-5) Pour $x, y \in V$, posons

$$\Phi(x,y) = \frac{1}{|G|} \sum_{\gamma \in G} \Psi(\gamma(x), \gamma(y)).$$

C'est une forme sesquilinéaire sur V. Si $x \in V \setminus \{0\}$, on a $\Psi(\gamma(x), \gamma(x)) > 0$ pour tout $\gamma \in G$ (parce que Ψ est définie positive), ce qui montre que $\Phi(x, x) > 0$, et donc que Φ est définie positive. Enfin, si $g \in G$, l'application $\gamma \mapsto \gamma g$ est une permutation de G, ce qui montre que

$$\Phi(g(x),g(y)) = \frac{1}{|G|} \sum_{\gamma \in G} \Psi(\gamma g(x), \gamma g(y)) = \Phi(x,y)$$

et donc que g est unitaire pour Φ .

(I-6) Notons Ψ le produit scalaire hermitien canonique sur $V = \mathbb{C}^n$. Soit $G \leq \mathsf{GL}_n(\mathbb{C})$ un sous-groupe fini : la question précédente fournit un produit scalaire hermitien Φ pour lequel les éléments de G sont unitaires. Notons \mathfrak{B}_0 la base canonique de \mathbb{C}^n , \mathfrak{B} une base orthonormée pour Φ et $P \in \mathsf{GL}_n(\mathbb{C})$ la matrice de changement de base de \mathfrak{B}_0 à \mathfrak{B} . Soient $x,y \in V$: les vecteurs colonne des coordonnées de x et y dans la base \mathfrak{B} sont $P^{-1}x$ et $P^{-1}y$ respectivement. On a donc $\Phi(x,y) = (P^{-1}x)^*(P^{-1}y) = x^*P^{-1*}P^{-1}y$. Si $g \in G$, on a $\Phi(gx,gy) = \Phi(x,y)$, donc $x^*g^*P^{-1*}P^{-1}gy = x^*P^{-1*}P^{-1}y$ pour tout $x,y \in \mathbb{C}^n$. Cela équivaut à $g^*P^{-1*}P^{-1}g = P^{-1*}P^{-1}$, soit $(P^{-1}gP)^*(P^{-1}gP) = \mathbb{I}_n$, i.e. $P^{-1}gP \in \mathbb{U}_n$. Comme c'est vrai pour tout $g \in G$, on a $P^{-1}GP \leq \mathbb{U}_n$, et G est conjugué à un sous-groupe de \mathbb{U}_n .

Deuxième partie - Le cas où n vaut 2

(II-A-1) (a) Soit $\mathfrak B$ une base $\operatorname{orthogonale}$ de V: on a un isomorphisme $f \colon \operatorname{End}(V) \overset{\sim}{\to} \operatorname{M}_2(\mathbf C)$; $g \mapsto \operatorname{Mat}_{\mathfrak B}(g)$. Soit $g \in \operatorname{End}(V)$ et $M = \operatorname{Mat}_{\mathfrak B}(g)$. Comme $\mathfrak B$ est orthogonale, on a $\operatorname{Mat}_{\mathfrak B}(g^*) = M^*$. Cela implique que $g \in E$ si et seulement si $M = M^*$ et $\operatorname{Tr}(M) = 0$. Écrivons $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$: les conditions qui précèdent équivalent à $a, d \in \mathbf R$, $c = \bar b$ et a + d = 0, soit encore $M = \begin{pmatrix} a & b \\ \bar b & -a \end{pmatrix}$ avec $a \in \mathbf R$ et $b \in \mathbf C$. Cela montre que $\dim_{\mathbf R}(E) = 3$

(II-A-1) (b) Conservons les notations de la question précédente. Si $g \in E$, on a $\mathsf{Mat}_{\mathfrak{B}}(g) = \left(\frac{a}{b} - a\right)$, ce qui implique que $q(g) = -\det(g) = -\det(M) = a^2 + |b|^2$, et montre que q est une forme quadratique définie positive sur E.

(II-A-1) (c) Avec les notations de la question (II-A-1) (a), l'isomorphisme $f \colon \operatorname{End}(V) \xrightarrow{\sim} \mathsf{M}_2(\mathbf{C})$ induit un isomorphisme

$$E \xrightarrow{\sim} \{M \in \mathsf{M}_2(\mathbf{C}); M = M^*, \operatorname{Tr}(M) = 0\} = \operatorname{Vect}\{M_1, M_2, M_3\}$$

où $M_1=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $M_2=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ et $M_3=\begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$. On a $q(xM_1+yM_2+zM_3)=x^2+y^2+z^2$ (cf question précédente): en polarisant, il vient

$$B(xM_1 + yM_2 + zM_3, x'M_1 + y'M_2 + z'M_3) = xx' + yy' + zz'.$$

Remarque. Comme on l'a vu dans la remarque précédente, on a $B(g_1,g_2)=rac{1}{2}\operatorname{Tr}(g_1g_2)$.

(II-A-2) Comme $a \in U(V)$, on a $a^* = a^{-1}$. Si $x \in E$, on a $x^* = x$, et donc

$$(axa^{-1})^* = (axa^*)^* = a^{**}x^*a^* = axa^{-1}$$

ce qui montre que $axa^{-1} \in \text{End}(V)$ est hermitien. En outre, on a $\text{Tr}(axa^{-1}) = \text{Tr}(x) = 0$ vu que $x \in E$: cela montre que $axa^{-1} \in E$.

(II-A-3) Si $x \in E$, on a $q(\varphi(a)(x)) = q(axa^{-1}) = -\det(axa^{-1}) = -\det(x) = q(x)$, ce qui montre que $\varphi(a) \in O(q)$.

(II-A-4) (a) Soit $a \in \operatorname{Ker}(\varphi)$: on a $\varphi(a) = \operatorname{Id}_E$. Pour tout $x \in E$, on a donc $\varphi(a)(x) = x$, *i.e.* ax = xa. Raisonnons matriciellement: soient $\mathfrak B$ une base orthonormée V et $U = {\alpha \choose \gamma} \in \mathsf M_2(\mathbf C)$ la matrice de a dans $\mathfrak B$. Avec les notations de la question (II-A-1) (c), la matrice U commute aux matrices M_1, M_2 et M_3 . L'égalité $UM_1 = M_1U$ implique que $\beta = \gamma = 0$. L'égalité $UM_2 = M_2U$ implique que $\alpha = \delta$, ce qui montre que $U = \alpha \operatorname{I}_2$. Comme $U \in \mathsf{U}_2$, on a en outre $|\alpha| = 1$: on en déduit que $a = \alpha \operatorname{Id}_V$. Réciproquement, si $\alpha \in \mathbf C$ est de module 1 et $a = \alpha \operatorname{Id}_V$, on a $\varphi(a) = \operatorname{Id}_E$. On a donc $\operatorname{Ker}(\varphi) = \{\alpha \operatorname{Id}_V\}_{\alpha \in U}$, où $U = \{\alpha \in \mathbf C^\times ; |\alpha| = 1\}$.

(II-A-4) (b) Comme $a \in U(V)$, l'endomorphisme a est diagonalisable en base orthonornée, est ses valeurs propres appartiennent au groupe U des nombres complexes de module 1: il existe une base orthonormée $\mathfrak{B}=(e_1,e_2)$ de V et $\alpha_1,\alpha_2\in U$ tels que $a(e_k)=\alpha_ke_k$ pour tout $k\in\{1,2\}$. Il existe $\theta\in\mathbf{R}$ tel que $\alpha_1\alpha_2^{-1}=e^{i\theta}$ (comme a n'est pas une homothétie vu que $a\notin\mathrm{Ker}(\varphi)$, on a $\alpha_1\neq\alpha_2$, et donc $\theta\notin2\pi\mathbf{Z}$). Notons $g_1,g_2,g_3\in\mathrm{End}(V)$ les éléments dont les matrices dans la base \mathfrak{B} sont M_1,M_2 et M_3 respectivement. D'après le question (II-A-1) (c), la famille $\mathfrak{B}:=(g_1,g_2,g_3)$ est une base orthonormée de E (pour q): cette dernière fournit une orientation de E. Comme $\mathrm{Mat}_{\mathfrak{B}}(a)=A:=\mathrm{diag}(\alpha_1,\alpha_2)$, et $AM_1A^{-1}=M_1$,

 $AM_2A^{-1} = \begin{pmatrix} 0 & e^{i\theta} \\ e^{-i\theta} & 0 \end{pmatrix} = \cos(\theta)M_2 + \sin(\theta)M_3 \text{ et } AM_3A^{-1} = \begin{pmatrix} 0 & ie^{i\theta} \\ -ie^{i\theta} & 0 \end{pmatrix} = -\sin(\theta)M_2 + \cos(\theta)M_3, \text{ la matrice de } \varphi(a) \text{ dans la base orthonormée } \mathscr{B} \text{ est } \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}. \text{ Cela montre que } \varphi(a) \text{ est la rotation d'axe } \text{Vect}(g_1) \text{ et d'angle } \theta.$

(II-A-4) (c) D'après la question précédente, on a $\varphi(\mathsf{U}(V)) \subset \mathsf{SO}(q) \simeq \mathsf{SO}_3(\mathbf{R})$. Montrons que c'est une égalité : soit $\rho \in \mathsf{SO}(q)$. C'est une rotation : soit $\gamma \in E$ un vecteur directeur unitaire de son axe. On a $\gamma \in E$ et $q(\gamma) = 1$, i.e. $\mathrm{Tr}(\gamma) = 0$ et $\det(\gamma) = -1$: le théorème de Cayley-Hamilton implique que $\gamma^2 - \mathsf{Id}_V = 0$, soit encore que γ est une symétrie, orthogonale vu que $\gamma \in E$ est hermitien. Il existe donc une base orthonormale (e_1, e_2) de V dans laquelle la matrice de γ est $\mathrm{diag}(1, -1) = M_1$ (rappelons que $\mathrm{Tr}(\gamma) = 0$). Soit θ l'angle de ρ (avec l'orientation de son axe donnée par θ). Notons $a \in \mathrm{U}(V)$ l'endomorphisme unitaire de V dont la matrice dans la base (e_1, e_2) est $\mathrm{diag}(e^{i\theta}, 1)$. La question précédente montre que $\varphi(a) = \rho$, ce qui conclut.

(II-A-5) D'après la question (II-A-4), le morphisme φ induit un isomorphisme $\mathsf{U}(V)/U\operatorname{Id}_V \overset{\sim}{\to} \mathsf{SO}(q)$. Soit $a \in \mathsf{U}(V)$: il existe une base orthonormée de V dans laquelle la matrice de a est $\operatorname{diag}(\alpha_1,\alpha_2)$, où $\alpha_1,\alpha_2 \in U$. Comme \mathbf{C} est algébriquement clos, il existe $\alpha \in \mathbf{C}$ tel que $\alpha^2 = \alpha_1\alpha_2$. On a bien sûr $\alpha \in U$ et $\alpha^{-1}a \in \mathsf{SU}(V)$. Cela montre que l'application $\mathsf{SU}(V) \to \mathsf{U}(V)/U\operatorname{Id}_V$ induite par l'inclusion $\mathsf{SU}(V) \subset \mathsf{U}(V)$ est surjective. Son noyau est $\mathsf{SU}(V) \cap U\operatorname{Id}_V = \{\alpha\operatorname{Id}_V; \alpha \in \mathbf{C}, \alpha^2 = 1\} = \{\pm\operatorname{Id}_V\}$. On en déduit un morphisme surjectif $\pi \colon \mathsf{SU}(V) \to \mathsf{SO}(q)$ de noyau $\{\pm\operatorname{Id}_V\}$.

Munissons \mathbf{R}^3 de sa structure canonique d'espace affine sur \mathbf{R} . On dispose d'un iscosaèdre régulier Ξ , qu'on peut supposer centré en 0 (quitte à faire une translation). On sait (admet?) que le groupe Γ des isométries positives de Ξ est isomorphe au groupe alterné \mathfrak{A}_5 . Posons $G = \pi^{-1}(\Gamma)$: d'après ce qui précède, on a $G/\{\pm \operatorname{Id}_V\} \stackrel{\sim}{\to} \Gamma \simeq \mathfrak{A}_5$. Le sous-groupe $G \subset \operatorname{SU}(V)$ est donc fini d'ordre 120, et si $A \subset G$ est un groupe abélien, alors $\pi(A)$ est un sous-groupe abélien de $\Gamma \simeq \mathfrak{A}_5$. Ce dernier est simple non abélien : on a $\pi(A) = \{e\}$, ce qui montre que $A \subset \{\pm \operatorname{Id}_V\}$, et donc que A est d'indice ≥ 60 .

(II-B-1) (a) Il existe $a \in G \setminus Z$ tel que a(D) = D: on a $(gag^{-1})(g(D)) = g(D)$, ce qui montre que g(D) est une droite propre de $gag^{-1} \in G \setminus Z$, et donc que $g(D) \in \mathcal{D}$.

(II-B-1) (b) Si $g_1, g_2 \in G$, on a $(g_1g_2)(D) = g_1(g_2(D))$ et bien sûr $\operatorname{Id}_V(D) = D$. Cela fournit une action de G sur \mathcal{D} , soit encore un morphisme de groupes $\sigma \colon G \to \mathfrak{S}_{\mathcal{D}}$. Si $g \in Z$ et $D \in \mathcal{D}$, on a bien sûr g(D) = D, ce qui montre $\operatorname{que}\sigma(g) = \operatorname{Id}_{\mathcal{D}}$, et donc $\operatorname{que} Z \subset \operatorname{Ker}(\sigma)$. Le morphisme σ se factorise donc en un morphisme de groupes $H = G/Z \to \mathfrak{S}_{\mathcal{D}}$, ce qui signifie précisément que l'action qui précède induit une action de H sur \mathcal{D} .

(II-B-2) (a) Soit $D \in \mathcal{D}$. Par hypothèse, il existe $a \in G \setminus Z$ tel que a(D) = D, i.e. $\overline{a} \cdot D = D$, où \overline{a} désigne l'image de a dans le quotient H = G/Z. Comme $a \notin Z$, l'image \overline{a} fournit un élément non trivial du stabilisateur de D: ce dernier n'est donc pas réduit à l'élément neutre. Il est donc d'ordre $e_D > 1$.

(II-B-2) (b) Posons $\mathscr{E} = \{(h,D) \in (H \setminus e) \times \mathcal{D}; h \cdot D = D\}$ (où e désigne l'élément neutre de H). On dénombre \mathscr{E} de deux façons différentes. Comme tout élément de $G \setminus Z$ a exactement deux droites propres, pour tout $h \in H \setminus \{e\}$, on a $\#\{D \in \mathscr{D}; h \cdot D = D\} = 2$, ce qui montre que $\#\mathscr{E} = 2(m-1)$. Par aiileurs, on a

$$\#\mathscr{E} = \sum_{D \in \mathscr{D}} \#\{h \in H \setminus \{e\}; h \cdot D = D\} = \sum_{D \in \mathscr{D}} (e_D - 1)$$

par définition de e_D .

(II-B-3) Écrivons D' = g(D) avec $g \in G$. Si $a \in G$, on a

$$a(D') = D' \Leftrightarrow ag(D) = g(D) \Leftrightarrow g^{-1}ag(D) = D$$

ce qui prouve de l'application $h \mapsto \overline{g}h\overline{g}^{-1}$ fournit une bijection du stabilisateur de D dans H sur celui de D'. Ces deus stabilisateurs ont donc même ordre, $i.e.\ e_{D'} = e_D$.

(II-B-4) (a) Si $i \in \{1, ..., r\}$ et $D \in \Omega_i$, l'application

$$H \to \Omega_i$$
$$h \mapsto h \cdot D$$

est surjective, et si $h_1, h_2 \in H$ alors $h_1 \cdot D = h_2 \cdot D$ si et seulement si $h_1^{-1}h_2$ appartient au stabilisateur de D: cela montre que chaque élément de Ω_i a exactement e_i antécedants par l'application précédente. Il en résulte que $m = \#H = e_i \#\Omega_i$. Par ailleurs, la formule de la question précédente implique que

$$2(m-1) = \sum_{i=1}^{r} \sum_{D \in \Omega_i} (e_i - 1) = \sum_{i=1}^{r} \#\Omega_i(e_i - 1) = \sum_{i=1}^{r} m(1 - \frac{1}{e_i}).$$

Cela montre que $\sum_{i=1}^{r} \left(1 - \frac{1}{e_i}\right) = 2\left(1 - \frac{1}{m}\right)$ en divisant par m.

(II-B-4) (b) D'après la question (II-B-2) (a), on a $e_i \geq 2$ *i.e.* $1 > 1 - \frac{1}{e_i} \geq \frac{1}{2}$ pour tout $i \in \{1, \dots, r\}$, donc $r > 2\left(1 - \frac{1}{m}\right) = \sum_{i=1}^{r} \left(1 - \frac{1}{e_i}\right) \geq \frac{r}{2}$ (en vertu de la question précédente), *i.e.* $1 \leq 2\left(1 - \frac{1}{m}\right) < r \leq 4\left(1 - \frac{1}{m}\right) < 4$ (rappelons qu'on a supposé $m \geq 2$). Cela montre que $r \in \{2, 3\}$.

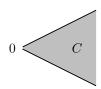
(II-B-5) On a $1-\frac{1}{e_1}+1-\frac{1}{e_2}=2\left(1-\frac{1}{m}\right)$, i.e. $\frac{1}{e_1}+\frac{1}{e_2}=\frac{2}{m}$. Comme $e_1\leq m$ et $e_2\leq m$ (en fait ce sont des diviseurs de m, étant des ordres de sous-groupes de H), cela implique que $e_1=e_2=m$. Cela signifie que le stabilisateur de tout élément de \mathcal{D} est égal à H en entier, soit encore que l'action de H sur \mathcal{D} est triviale : les orbites sont ponctuelles. Cela montre que $\#\mathcal{D}=2$. Les deux droites composant \mathcal{D} sont donc propres pour tous les éléments de G: le choix de vecteurs directeurs de ces dernières fournit une base de co-diagonalisation de G, ce qui montre que G est abélien (isomorphe à un sous-groupe de U^2 , où $U=\{z\in \mathbf{C},\ |z|=1\}$).

(II-B-6) Comme $\sum_{i=1}^3 \left(1 - \frac{1}{e_i}\right) = 2\left(1 - \frac{1}{m}\right)$ et $e_1 = e_2 = 2$, on a $e_3 = \frac{m}{2}$. Soit alors $D \in \Omega_3$. Notons G_D le stabilisateur de D dans G: le stabilisateur de D dans H est G_D/Z . Par hypothèse, ce dernier est d'ordre $\frac{m}{2}$, donc d'indice 2 dans H. Cela implique que G_D est d'indice 2 dans G. Reste à voir que G_D est abélien. Soient $v \in D$ (resp. $w \in D^{\perp}$) un vecteur unitaire : (v, w) est une base orthonormale du plan hermitien V. Comme $G \subset \mathsf{U}(V)$, si g(D) = D, alors $g(D^{\perp}) = D^{\perp}$: cela implique que la matrice de G dans la base G0, we est diagonale, à coefficients diagonaux dans G1. L'ensemble de ces éléments forme donc un sous-groupe de G1 isomorphe à G2: il est abélien. Son sous-groupe G3 est donc abélien lui aussi.

(II-B-7) Supposons désormais que r=3 et $(e_1,e_2)\neq (2,2)$. On a $3-\frac{1}{e_1}-\frac{1}{e_2}-\frac{1}{e_3}=2\left(1-\frac{1}{m}\right)$, i.e. $1+\frac{2}{m}=\frac{1}{e_1}+\frac{1}{e_2}+\frac{1}{e_3}$. Comme $e_1\leq e_2\leq e_3$, on a donc $\frac{3}{e_1}\geq 1+\frac{2}{m}$, i.e. $e_1=\frac{3m}{m+2}<3$: comme $e_1\geq 2$ d'après la question (II-B-2) (a), on a nécessairement $e_1=2$: vu l'hypothèse, on a donc $e_2\geq 3$. L'égalité précedente implique alors que $\frac{1}{2}+\frac{2}{m}=\frac{1}{e_2}+\frac{1}{e_3}\leq \frac{2}{e_2}$ (vu que $e_2\leq e_3$), soit encore $e_2\leq \frac{4m}{m+4}<4$: comme $e_2\geq 3$, on a donc $e_2=3$, ce qui montre que $\frac{1}{e_3}=\frac{1}{2}+\frac{2}{m}-\frac{1}{3}=\frac{1}{6}+\frac{2}{m}>\frac{1}{6}$. Il en résulte que $e_3<6$: comme $e_3\geq e_2=3$, on a donc $e_3\in \{3,4,5\}$. Si $e_3=3$ (resp. $e_3=4$, resp. $e_3=5$), on a m=12 (resp. m=24, resp. m=60). Cela montre que $(G:Z)=\#H\leq 60$ et donc que le groupe abélien Z est d'indice au plus 60 dans G. Finalement, on a montré que tout sous-groupe fini de U(V) contient un sous-groupe abélien distingué d'indice ≤ 60 . Soit maintenant G un sous-groupe fini de G0. On muni G1 et G2 de sa structure hermitienne canonique. D'après la question (I-6), il existe G3 et G4 telle que G5 et G6 et G7 contient un sous-groupe abélien distingué d'indice G8 et G9 et G9 et G9. Celle que G9 et G

Troisième partie - La méthode de Frobenius

(III-A-1) Étant unitaire, v est diagonalisable en base orthonormée : soit $\mathfrak{B}=(e_1,\ldots,e_n)$ une base de diagonalisation. Par hypothèse, pour tout $k\in\{1,\ldots,n\}$ il existe $\theta_k\in[-\tau,\tau]$ tel que $v(e_k)=e^{i\theta_k}e_k$. Écrivons $x=\sum\limits_{k=1}^n x_ke_k$ avec $x_1,\ldots,x_n\in\mathbf{C}$: on a $\Phi(v(x),x)=\sum\limits_{k=1}^n |x_k|^2e^{i\theta_k}$. Si $z\in\mathbf{C}\setminus\mathbf{R}_{\leq 0}$, notons $\arg(z)\in]-\pi,\pi[$ son argument principal (de sorte que $z=|z|e^{i\arg(z)}$). Posons $C=\{z\in\mathbf{C}\setminus\mathbf{R}_{<0}\,;\,|\arg(z)|\leq\tau\}$.



C'est un cône épointé dans C. Comme $0 \le \tau < \frac{\pi}{2}$, il est convexe. Ses éléments sont les nombres complexes de la forme $re^{i\alpha}$ avec $r \in \mathbf{R}_{>0}$ et $\alpha \in [-\tau, \tau]$. Comme $e^{i\theta_k} \in C$ pour tout $k \in \{1, \ldots, n\}$, et comme les x_k sont non tous nuls (parce que $x \ne 0$) l'égalité qui précède montre que $\Phi(v(x), x) \in C$ par convexité, ce qui conclut

(III-A-2) (a) Soit $x \in T_{\lambda} \cap U_{\lambda}^{\perp}$: on a $vuv^{-1}(x) = \lambda x$, i.e. $uv^{-1}(x) = \lambda v^{-1}(x)$, i.e. $v^{-1}(x) \in U_{\lambda}$. Comme $x \in U_{\lambda}^{\perp}$, on a donc $\Phi(x, v^{-1}(x)) = 0$. Comme v est unitaire, v^{-1} est l'adjoint de v: l'égalité précédente se réécrit $\Phi(v(x), x) = 0$. La question précédente implique donc que x = 0.

- (III-A-2) (b) Comme u et t commutent, les sous-espaces propres de u sont stables par t: on a $t(U_{\lambda}) \subset U_{\lambda}$. Comme t est unitaire, on a aussi $t(U_{\lambda}^{\perp}) \subset U_{\lambda}^{\perp}$. Soit maintenant $x \in T_{\lambda}$: écrivons x = y + z avec $y \in U_{\lambda}$ et $z \in U_{\lambda}^{\perp}$. En appliquant t, il vient $\lambda y + \lambda z = \lambda x = t(x) = t(y) + t(z)$: comme $t(y) \in U_{\lambda}$ et $t(z) \in U_{\lambda}^{\perp}$ d'après ce qui précède, on a $t(y) = \lambda y$ et $t(z) = \lambda z$ par unicité, i.e. $y, z \in T_{\lambda}$. Il en résulte que $z \in T_{\lambda} \cap U_{\lambda}^{\perp}$, et donc z = 0 en vertu de la question précédente. On en déduit que $T_{\lambda} \subset U_{\lambda}$. Par ailleurs, le calcul effectué au début de la question précédente montre que $T_{\lambda} = v(U_{\lambda})$, et donc que $\dim_{\mathbf{C}}(T_{\lambda}) = \dim_{\mathbf{C}}(U_{\lambda})$: l'inclusion précédente est une égalité.
- Ce qu'on vient de démontrer montre que $\operatorname{Sp}(t) = \operatorname{Sp}(u)$, et que pour toute valeur propre λ de u, les sous-espaces propres correspondants de u et de t sont égaux. Comme u et t sont diagonalisables (parce qu'unitaires), ils sont donc égaux. L'égalité u=t signifie précisément que u et v commutent.
- (III-A-3) Soit $y \in V \setminus \{0\}$ un vecteur propre de vs^{-1} pour la valeur propre μ . Posons $x = s^{-1}(y) \in V$: on a $x \neq 0$, et $v(x) = \mu s(x)$. Cela implique que $\Phi(v(x), x) = \overline{\mu}\Phi(s(x), x)$. D'après la question (III-A-1) appliquée à v et à s, il existe $r, r' \in \mathbf{R}_{>0}$ et $\alpha, \alpha' \in [-\tau, \tau]$ tels que $\Phi(v(x), x) = re^{i\alpha}$ et $\Phi(s(x), x) = r'e^{i\alpha'}$, de sorte que $\mu = \frac{r}{r'}e^{i(\alpha'-\alpha)}$. Comme $|\mu| = 1$ (parce que $v, s \in \mathsf{U}(V)$, donc $vs^{-1} \in \mathsf{U}(V)$), on a $\mu = e^{i\beta}$ avec $\beta = \alpha' \alpha \in [-2\tau, 2\tau]$ (parce que $\alpha, \alpha' \in [-\tau, \tau]$).
- (III-A-4) Observons que si $g \in \text{End}(V)$ et $u \in \mathsf{U}(V)$, on a $N(gu) = \text{Tr}(u^*g^*gu) = \text{Tr}(g^*g) = N(g)$ car $uu^* = \mathsf{Id}_V$. De même, on a N(ug) = N(g). Dans la situation qui nous occupe, cela implique que

$$N(vuv^{-1}u^{-1} - \mathsf{Id}_V) = N((vuv^{-1}u^{-1} - \mathsf{Id}_V)uv) = N(vu - uv) = N(vg - gv)$$

où $g=u-\operatorname{Id}_V$. On a $v\in \operatorname{U}(V)$: l'endomorphisme v est diagonalisable en base orthonormée : soit $\mathfrak B$ une base orthogonale de diagonalisation de v. Écrivons $\operatorname{Mat}_{\mathfrak B}(v)=\operatorname{diag}\left(e^{i\theta_1},\dots,e^{i\theta_n}\right)$ et $\operatorname{Mat}_{\mathfrak B}(g)=(a_{k,\ell})_{1\leq k,\ell\leq n}$. Si $k,\ell\in\{1,\dots,n\}$, on a $e^{i\theta_k}-e^{i\theta_\ell}=e^{i\frac{\theta_k+\theta_\ell}{2}}\left(e^{i\frac{\theta_k-\theta_\ell}{2}}-e^{-i\frac{\theta_k-\theta_\ell}{2}}\right)=2i\sin\left(\frac{\theta_k-\theta_\ell}{2}\right)e^{i\frac{\theta_k+\theta_\ell}{2}}$, ce qui implique que $\left|e^{i\theta_k}-e^{i\theta_\ell}\right|=2\left|\sin\left(\frac{\theta_k-\theta_\ell}{2}\right)\right|$. Par hypothèse, on a $\theta_k,\theta_\ell\in[-\tau,\tau]$, cela montre que $\left|e^{i\theta_k}-e^{i\theta_\ell}\right|^2\leq 4\sin^2(\theta)$. La matrice de vg-gv dans la base orthonormée $\mathfrak B$ est $\left(\left(e^{i\theta_k}-e^{i\theta_\ell}\right)a_{k,\ell}\right)_{1\leq k,\ell\leq n}$: on a

$$N(vg - gv) = \sum_{1 \le k, \ell \le n} \left| \left(e^{i\theta_k} - e^{i\theta_\ell} \right) a_{k,\ell} \right|^2 \le 4 \sin^2(\tau) \sum_{1 \le k, \ell \le n} \left| a_{k,\ell} \right|^2 = 4 \sin^2(\tau) N(g),$$

ce qui conclut.

- (III-B-1) (a) Comme G est fini, on dispose de $\delta:=\min_{g\in G\setminus \{\mathsf{Id}_V\}} N(g-\mathsf{Id}_V)\in \mathbf{R}_{>0}$. Par hypothèse, on a $\mathrm{Sp}(v)=\{e^{i\alpha_k}\}_{1\leq k\leq n}$ avec $\alpha_k\in \left]-\frac{\pi}{6},\frac{\pi}{6}\right[$. Posons $\tau_v:=\max_{1\leq k\leq n}|\alpha_k|$: on a $\tau_v<\frac{\pi}{6}$, et donc $c_v:=4\sin^2(\tau_v)<1$. Si $k\in \mathbf{N}$, la question précédente appliquée avec $\tau=\tau_v$ et $u=u_k$ implique que $N(u_{k+1}-\mathsf{Id}_V)\leq c_vN(u_k-\mathsf{Id}_V)$. Une récurrence immédiate montre alors que $N(u_k-\mathsf{Id}_V)\leq c_v^kN(u-\mathsf{Id}_V)$. Comme $\lim_{k\to\infty}c_v^k=0$, il existe $k_0\in \mathbf{N}$ tel que $k\geq k_0\Rightarrow c_v^kN(u-\mathsf{Id}_V)<\delta$, d'où $k\geq k_0\Rightarrow N(u_k-\mathsf{Id}_V)<\delta$. Par définition de δ , cela implique que $u_k=\mathsf{Id}_V$ dès que $k\geq k_0$.
- (III-B-1) (b) Soit $k \in \mathbb{N}$. Les valeurs propres de v (et donc de $s = u_k v u_k^{-1}$) sont toutes de la forme $e^{i\alpha}$ avec $\alpha \in \left[-\frac{\pi}{6}, \frac{\pi}{6}\right]$: d'après la question (III-A-3), les valeurs propres de $u_{k+1} = v s^{-1}$ sont de la forme $e^{i\beta}$ avec $\beta \in \left[-\frac{\pi}{3}, \frac{\pi}{3}\right]$. Vu l'hypothèse faite sur u, cela montre qu'il existe $\tau \in \left[0, \frac{\pi}{2}\right[$ tel que pour tout $k \in \mathbb{N}$, les valeurs propres de u_k sont de la forme $e^{i\theta}$ avec $\theta \in [-\tau, \tau]$.
- Soit maintenant $k \in \mathbb{N}_{>0}$ tel que $u_{k+1} = \mathsf{Id}_V$. Cela implique que v et $u_k = vu_{k-1}v^{-1}u_{k-1}^{-1}$ commutent, et donc que v et $t := u_{k-1}v^{-1}u_{k-1}^{-1}$ commutent. D'après ce qui précède, la question (III-A-2) (b) s'applique : les endomorphismes v et u_{k-1} commutent, i.e. $u_k = \mathsf{Id}_V$. On a donc $(\forall k \in \mathbb{N}_{>0})$ $u_{k+1} = \mathsf{Id}_V \Rightarrow u_k = \mathsf{Id}_V$: comme $u_k = \mathsf{Id}_V$ si k assez grand (cf question précédente), on en déduit que $u_1 = 0$, i.e. que u et v commutent.
- (III-B-2) Si $g,h \in G \subset \mathsf{U}(V)$, on a $N(g-h) = N(gh^{-1} \mathsf{Id}_V)$ comme on l'a vu plus haut : il suffit de trouver $\eta \in \mathbf{R}_{>0}$ tel que $(\forall g \in G) \, N(G \mathsf{Id}_V) < \eta \Rightarrow g \in S$. Soit donc $g \in G \subset \mathsf{U}(V)$: écrivons $\mathrm{Sp}(g) = \{e^{i\theta_k}\}_{1 \leq k \leq n} \text{ avec } \theta_k \in]-\pi,\pi]$ pour tout $k \in \{1,\dots,n\}$, et soit $\mathfrak B$ une base orthonormée de V telle qu'on ait $\mathrm{Mat}_{\mathfrak B}(g) = \mathrm{diag}\left(e^{i\theta_1},\dots,e^{i\theta_n}\right)$. Cela implique que $\mathrm{Mat}_{\mathfrak B}(g \mathsf{Id}_V) = \mathrm{diag}\left(e^{i\theta_1} 1,\dots,e^{i\theta_n} 1\right)$, et donc $N(g \mathsf{Id}_V) = \sum_{k=1}^n \left|e^{i\theta_k} 1\right|^2 = 4\sum_{k=1}^n \sin^2\left(\frac{\theta_k}{2}\right)$. Si $\eta \in \mathbf{R}_{>0}$ est tel que $N(g \mathsf{Id}_V) < \eta$, on a $4\sin^2\left(\frac{\theta_k}{2}\right) < \eta$, i.e. $\left|\sin\left(\frac{\theta_k}{2}\right)\right| < \frac{\sqrt{\eta}}{2}$, soit encore $\frac{|\theta_k|}{2} < A\sin\left(\frac{\sqrt{\eta}}{2}\right)$ pour tout $k \in \{1,\dots,n\}$. Il suffit donc de choisir $\eta \in \mathbf{R}_{>0}$ tel que $2\mathrm{Asin}\left(\frac{\sqrt{\eta}}{2}\right) \leq \frac{\pi}{6}$, i.e. $\eta \leq 4\sin^2\left(\frac{\pi}{12}\right) = 2 \sqrt{3}$ (c'est indépendant de n).

(III-B-3) On a $\dim_{\mathbf{R}}(E) = \dim_{\mathbf{R}}(\operatorname{End}(V)) = 2\dim_{\mathbf{C}}(\operatorname{End}(V)) = 2n^2$. Notons m la mesure de la boule unité de E. Pour tout $g \in \mathsf{U}(V)$, on a N(g) = n: les éléments de G se situent sur la boule de centre 0 et de rayon \sqrt{n} . Soit g_1, \ldots, g_d un système de représentants de G/A: d'après la question précédente, on a $k \neq \ell \Rightarrow N(g_k - g_\ell) \geq \eta$. Cela implique que les boules (fermées) de rayon $r := \frac{\sqrt{\eta}}{2}$ centrées en g_1, \ldots, g_d sont deux à deux disjointes. Par homogénéité, elles sont de mesure $r^{2n^2}m$: leur réunion étant disjointe, elle est de mesure $r^{2n^2}md$. Par ailleurs, elles se trouvent dans la boule fermée de centre 0 et de rayon $\sqrt{n} + r$ (de mesure $(\sqrt{n} + r)^{2n^2}m$), mais ne rencontrent pas la boule ouverte de centre 0 et de rayon $\sqrt{n} - r$ (de mesure $(\sqrt{n} - r)^{2n^2}m$): elles sont incluses dans la couronne fermée comprise entre les sphères de centre 0 de rayon $\sqrt{n} - r$ et $\sqrt{n} + r$, qui est donc de mesure $((\sqrt{n} + r)^{2n^2} - (\sqrt{n} - r)^{2n^2})m$. Cela montre que la mesure de la réunion des boules est inférieure à la mesure de la couronne, i.e. que $r^{2n^2}md \leq ((\sqrt{n} + r)^{2n^2} - (\sqrt{n} - r)^{2n^2})m$. En divisant par $r^{2n^2}m$, il vient $[G:A] = d \leq (\frac{\sqrt{n}}{r} + 1)^{2n^2} - (\frac{\sqrt{n}}{r} + 1)^{2n^2}$: on conclut en observant que $\frac{\sqrt{n}}{r} = 2\sqrt{\frac{n}{\eta}}$.

(III-B-4) Pour conclure, il s'agit de justifier que le sous-groupe A de G est abélien et distingué. D'après la question (III-B-1), les éléments de S commutent deux à deux : le sous-groupe de G qu'ils engendrent est abélien. Enfin, la partie S de G est stable par conjugaison (le spectre est un invariant de similitude) : cela implique que A est distingué dans G.